A Spectroscopic Galaxy Evolution Survey with the Hubble Space Telescope


Publications


  1. (1)Where stars form: inside-out growth and coherent star formation from HST Halpha maps of 2676 galaxies across the main sequence at z∼1, Nelson et al., arXiv:1507.03999, submitted to ApJ

  2. (2)Forming Compact Massive Galaxies, van Dokkum et al., arXiv:1506.03085, submitted to ApJ

  3. (3)Overturning the Case for Gravitational Powering in the Prototypical Cooling Lyalpha Nebula, Prescott et al., 2015ApJ...802...32P

  4. (4) On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7<z<2.8, Pacifici et al., 2015MNRAS.447..786P

  5. (5)HST Emission Line Galaxies at z∼2: The Mystery of Neon, Zeimann et al., arXiv:1410.6159, accepted to ApJ

  6. (6)HST Emission Line Galaxies at z∼2: The Ly-alpha Escape Fraction, Ciardullo et al., arXiv:1409.8304, accepted to ApJ

  7. (7)Dense cores in galaxies out to z=2.5 in SDSS, UltraVISTA, and the five 3D-HST/CANDELS fields, van Dokkum et al., 2014ApJ...791...45V

  8. (8)The Nature of Extreme Emission Line Galaxies at z = 1-2: Kinematics and Metallicities from Near-infrared Spectroscopy, Maseda et al., 2014ApJ...791...17M

  9. (9)No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z ∼ 2 in CANDELS and 3D-HST, Trump et al., arXiv:1407.7525, accepted to ApJ

  10. (10)Geometry of Star-Forming Galaxies from SDSS, 3D-HST and CANDELS, van der Wel et al. 2014ApJ...792...L6

  11. (11)Constraining the Low-Mass Slope of the Star Formation Sequence at 0.5<z<2.5, Whitaker et al., arXiv:1407.1843, submitted to ApJ

    • Download: Data from Table 2 of Whitaker et al. 2014

  12. (12)A Massive Galaxy in its Core Formation Phase Three Billion Years After the Big Bang, Nelson et al., arXiv:1406.3350; 2014, Nature, doi:10.1038/nature13616

  13. (13)3D-HST Emission Line Galaxies at z ∼ 2: Discrepancies in the Optical/UV Star Formation Rates, Zeimann et al., 2014ApJ...790..113Z

  14. (14)Star-forming blue ETGs in two newly discovered galaxy overdensities in the HUDF at z=1.84 and 1.9: unveiling the progenitors of passive ETGs in cluster cores, Mei et al., arXiv:1403.7524, submitted to ApJ

  15. (15)Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62, Wong et al., arXiv:1405.3661, submitted to ApJL

  16. (16)3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z=3, van der Wel et al., arXiv:1404.2844, accepted to ApJ

  17. (17)3D-HST WFC3-Selected Catalogs in the Five 3D-HST/CANDELS Fields: Photometry, Photometric Redshifts and Stellar Masses, Skelton, Whitaker, Momcheva, Brammer, van Dokkum et al., arxiv:1403.3689, submitted to ApJS

  18. (18)Bulge Growth and Quenching since z = 2.5 in CANDELS/3D-HST, Lang et al., 2014, arXiv:1402.0866, accepted to ApJ

  19. (19)Observations of environmental quenching in groups in the 11 Gyr since z=2.5: different quenching for central and satellite galaxies, Tal et al., 2014ApJ...789..164T

  20. (20)Hubble Space Telescope Grism Spectroscopy of Extreme Starbursts across Cosmic Time: The Role of Dwarf Galaxies in the Star Formation History of the Universe, Atek et al., 2014ApJ...789...96A

  21. (21)Exploring the chemical link between local ellipticals and their high-redshift progenitors, Leja et al., 2013ApJ...778L..24L

  22. (22)Confirmation of Small Dynamical and Stellar Masses for Extreme Emission Line Galaxies at z∼2, Maseda et al., 2013ApJ...778L..22M

  23. (23)A CANDELS - 3D-HST Synergy: Resolved Star Formation Patterns at 0.7, Wyuts et al., 2013ApJ...779..135W

  24. (24)Direct measurement of dust attenuation in z∼1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates, Price et al., 2013, arXiv:1310.4177, accepted to ApJ

  25. (25)The Mass-Metallicity-SFR Relation at z ∼ 2 with 3D-HST, Cullen et al., 2014MNRAS.440.2300C

  26. (26)A spectroscopic sample of massive, evolved z∼2 galaxies: Implications for the evolution of the mass-size relation, Krogager et al., arXiv:1309.6316, submitted to ApJ

  27. (27)The Most Luminous z∼9-10 Galaxy Candidates yet Found: The Luminosity Function, Cosmic Star-Formation Rate, and the First Mass Density Estimate at 500 Myr, Oesch et al., 2014ApJ...786..108O

  28. (28)How dead are dead galaxies? Mid-Infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating, Fumagalli et al., arXiv:1308.4132, submitted to ApJ

  29. (29)3D-HST Data Release v3.0: Extremely Deep Spectra in the UDF and WFC3 Mosaics in the 3D-HST/CANDELS Fields, van Dokkum et al., 2013

  30. (30)Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z∼2, Whitaker et al., 2013ApJ...770L..39W

    • Download: Data from Figure 2 of Whitaker et al. 2013

  31. (31)The Assembly of Milky Way-like Galaxies Since z∼2.5, van Dokkum et al., 2013ApJ...771L..35V

  32. (32)The Structural Evolution of Milky Way-like Star Forming Galaxies since z∼1.3, Patel et al., 2013ApJ...778..115P

  33. (33)A Tentative Detection of an Emission Line at 1.6 m for the z ∼ 12 Candidate UDFj-39546284, Brammer et al., 2013, ApJ...765L..2B

  34. (34)The spatial extent and distribution of star formation in 3D-HST mergers at z∼1.5, Schmidt et al., 2013, MNRAS

  35. (35)The Radial Distribution of Star Formation in Galaxies at z ∼ 1 from the 3D-HST Survey, Nelson et al., 2013, ApJ...763L..16N

  36. (36)Testing Diagnostics of Nuclear Activity and Star Formation in Galaxies at z > 1, Trump et al., 2013ApJ...763L...6T

  37. (37)Large Scale Star-Formation Driven Outflows at 1<z<2 in the 3D-HST, Lundgren et al., 2012, ApJ...760..49L

  38. (38)3D-HST Grism Spectroscopy of a Gravitationally Lensed, Low-metallicity Starburst Galaxy at z=1.847, Brammer et al., 2012, ApJ...758L..17B

  39. (39)H-alpha Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass, Fumagalli et al., 2012, ApJ...757L..22F

  40. (40)3D-HST: A Wide-Field Grism Spectroscopic Survey with the Hubble Space Telescope, Brammer et al., 2012, ApJS...200..13B

  41. (41)Spatially Resolved H Maps and Sizes of 57 Strongly Star-forming Galaxies at z∼1 from 3D-HST: Evidence for Rapid Inside-out Assembly of Disk Galaxies, Nelson et al., 2012, ApJ...747L..28N

  42. (42)A CANDELS WFC3 Grism Study of Emission-line Galaxies at z ∼ 2: A Mix of Nuclear Activity and Low-metallicity Star Formation, Trump et al., 2011, ApJ...743..144T

  43. (43)First Results from the 3D-HST survey: the Striking Diversity of Massive Galaxies at z>1, van Dokkum et al., 2011, ApJ, 743L, 15

Scientific Collaborations

  1. (1)The MOSFIRE Deep Evolution Field (MOSDEF) Survey: Rest-frame Optical Spectroscopy for ~1500 H-selected Galaxies at 1.37<z<3.8, Kriek et al., 2015ApJS..218...15K

  2. (2)The MOSDEF Survey: Dissecting the star-formation rate vs. stellar mass relation using H$\alpha$ and H$\beta$ emission lines at z∼2, Shivaei et al., arXiv:1507.03017, submitted to ApJ

  3. (3)The MOSDEF Survey: Measurements of Balmer Decrements and the Dust Attenuation Curve at Redshifts z∼1.4--2.6, Reddy et al., 2015ApJ...806..259R

  4. (4)First Results from the VIRIAL Survey: The Stellar Content of UVJ-selected Quiescent Galaxies at 1.5<z<2 from KMOS, Mendel et al., 2015ApJ...804L...4M

  5. (5)The KMOS3D Survey: Design, First Results, and the Evolution of Galaxy Kinematics from 0.7<z<2.7, Wasnioski et al., 2015ApJ...799..209W

  6. (6)The MOSDEF Survey: Excitation Properties of z∼2.3 Star-forming Galaxies, Shapley et al., 2014, 2015ApJ...801...88S

  7. (7)The MOSDEF Survey: Optical AGN Diagnostics at z∼2.3, Coil et al., 2014, 2015ApJ...801...35C

  8. (8)The MOSDEF Survey: Mass, Metallicity, and Star-formation Rate at z∼2.3, Sanders et al., 2014, 2015ApJ...799..138S

  9. (9)A Consistent Study of Metallicity Evolution at 0.8 < z < 2.6, Wuyts et al., 2014ApJ...789L..40W

  10. (10)Evidence for Wide-Spread AGN Driven Outflows in the Most Massive z∼1-2 Star Forming Galaxies, Genzel et al., 2014, 2014ApJ...796....7G

Press Releases

  1. Sky & Telescope summary of the 3D-HST AAS Special Session in January 2015:  “Hubble’s Long Look at Distant Galaxies”.

  2. NASA, ESA, Yale and Keck press releases based on "A Massive Galaxy in its Core Formation Phase Three Billion Years After the Big Bang, Nelson et al., 2014, Nature, 10.1038/nature13616.

  3. NASA and Yale press releases based on Wong et al. (2014):  “Hubble Shows Farthest Lensing Galaxy Yields Clues to Early Universe”.

  4. NASA and Yale press releases based on van Dokkum et al. (2013) and Patel et al. (2013):  “Hubble Reveals First Pictures of Milky Way’s Formative Years”. Also on NBS News, Huffington Post, Space.com and Slate.