Galaxy Structure as a Driver of the Slope and Scatter of the Star Formation Sequence

Kate Whitaker
Hubble Fellow, UMass Amherst

Marijn Franx • Rachel Bezanson • Gabriel B. Brammer • Pieter G. van Dokkum
Mariska T. Kriek • Ivo Labbe • Joel Leja • Ivelina G. Momcheva • Erica J. Nelson • Jane R. Rigby • Hans-Walter Rix • Rosalind E. Skelton • Arjen van der Wel • Stijn Wuyts

Published 2015 September 22, 2015 • The Astrophysical Journal Letters, Volume 811, Number 1

log(M★)

log(SFR)

Star Formation

Gas Collapse

Structure Formation

log(M★)
Galaxy Structure as a Driver of the Slope and Scatter of the Star Formation Sequence

Gas Collapse → Structure Formation → Log(SFR)

log(M★) vs. Log(M*)

Kate Whitaker
Hubble Fellow, UMass Amherst

Marijn Franx • Rachel Bezanson • Gabriel B. Brammer • Pieter G. van Dokkum
Mariska T. Kriek • Ivo Labbe • Joel Leja • Ivelina G. Momcheva • Erica J. Nelson • Jane R. Rigby • Hans-Walter Rix • Rosalind E. Skelton • Arjen van der Wel • Stijn Wuyts

Published 2015 September 22, 2015 • The Astrophysical Journal Letters, Volume 811, Number 1

Kate Whitaker
3D-HST Conference
November 17, 2015
From the **Initial Gas Collapse** to the **Formation of Structure**

- **Little to No Rotation**
 - Spheroidal distribution of stars and gas

- **Some Rotation**
 - Flattened spheroid and extended gas-rich disk

- **Strong Rotation**
 - Extended gas-rich disk with no spheroid
Star-forming galaxies well characterized by exponential disks (n=1)
- Quiescent galaxies have de Vaucouleur profiles (n=4)
- Galaxies at the tip/upper envelope have cuspier light profiles, akin to dead galaxies.
The Star Formation Sequence: how is star formation regulated?

Turn-over in the log(SFR)-log(M*) relation
— star forming galaxies only —

- Turn-over in the log(SFR)-log(M*) relation for different redshift ranges:
 - 0.5<z<1.0
 - 1.0<z<1.5
 - 1.5<z<2.0
 - 2.0<z<2.5

- Logarithmic scales for SFR and mass.
- High-mass galaxies: log(M*/M_\text{sun})>10.2
- Low-mass galaxies: log(M*/M_\text{sun})<10.2

Whitaker et al. 2014b

Kate Whitaker

3D-HST Conference

November 17, 2015
Bulge Formation: does a bulge lower the global star formation rate?

Star formation occurs in exponential disks (e.g. Nelson et al. 2012, 2013)

\[\text{SFR} \propto M_{\text{disk}} \]

e.g., Abramson et al. 2014

log(star formation rate) vs log(stellar mass)
star formation occurs in exponential disks
(e.g. Nelson et al. 2012, 2013)

\[\text{SFR} \propto M_{\text{disk}} \]

older stars
young stars
star formation occurs in exponential disks (e.g. Nelson et al. 2012, 2013)

\[\text{SFR} \propto M_{\text{disk}} \]

older stars
young stars

Bulge Formation: does a bulge lower the global star formation rate?

Kate Whitaker

3D-HST Conference

November 17, 2015
Bulge Formation: does a bulge lower the global star formation rate?

Star formation occurs in exponential disks (e.g. Nelson et al. 2012, 2013)

\[\text{SFR} \propto M_{\text{disk}} \]

M_{\text{bulge}} increases

log(star formation rate)

log(stellar mass)

older stars

young stars

e.g., Abramson et al. 2014
star formation occurs in exponential disks
(e.g. Nelson et al. 2012, 2013)

Bulge Formation: does a bulge lower the global star formation rate?

\[\text{SFR} \propto M_{\text{disk}} \]

\[s\text{SFR} = \frac{\text{SFR}}{M_{\text{bulge}} + M_{\text{disk}}} \]

older stars
young stars

\[\text{M}_{\text{bulge}} \text{ increases} \]

\[\text{SFR} \propto M_{\text{disk}} \]

e.g., Abramson et al. 2014

Kate Whitaker
3D-HST Conference
November 17, 2015
Bulge Formation: does a bulge lower the global star formation rate?

\[\log(\text{star formation rate}) \]

\[\log(\text{stellar mass}) \]

Sersic Index

E.g., Abramson et al. 2014
Bulge Formation: does a bulge lower the global star formation rate?

All Galaxies

log(SFR) [M\(_{\odot}\) yr\(^{-1}\)]

log(stellar mass)

Sersic Index

0.5<z<1.0

1.0<z<1.5

1.5<z<2.5

Whitaker et al. 2015

Kate Whitaker

3D-HST Conference

November 17, 2015

Whitaker et al. 2015
Bulge Formation: does a bulge lower the global star formation rate?

Figure:*

Left panel: Logarithm of the specific star formation rate (SFR) vs. Sersic Index. The range 0.5<z<1.0 is shown.
Right panel: All galaxies plot with colors representing different Sersic Index values. The regions 0.5<z<2.5 and 10<log(M/M☉)<11 are highlighted.

Whitaker et al. 2015

Kate Whitaker

3D-HST Conference

November 17, 2015
Bulge Formation: does a bulge lower the global star formation rate?

Star-forming Galaxies

log(SFR) [M\textsubscript{sun}\ yr-1]

log(stellar mass)

0.5<z<1.0

1.0<z<1.5

1.5<z<2.5

Sersic Index

Whitaker et al. 2015

Kate Whitaker

3D-HST Conference

November 17, 2015
Bulge Formation: does a bulge lower the global star formation rate?

Star-forming Galaxies

Whitaker et al. 2015

Kate Whitaker
3D-HST Conference
November 17, 2015
Bulge Formation: does a bulge lower the global star formation rate?

Star-forming Galaxies

Whitaker et al. 2015
Kate Whitaker
November 17, 2015
Bulge Formation: does a bulge lower the global star formation rate?

Star-forming Galaxies

Whitaker et al. 2015

Kate Whitaker
3D-HST Conference
November 17, 2015
Bulge Formation: does a bulge lower the global star formation rate?

Why don’t we see a strong trend at z=2?

![Graph showing the relationship between Sersic Index and slope of log(SFR)-log(M)].

(UVJ) Star-forming

0.5<z<1.0
1.0<z<1.5
1.5<z<2.5

Whitaker et al. 2015

Kate Whitaker

3D-HST Conference

November 17, 2015
Bulge Formation: does a bulge lower the global star formation rate?

Why don’t we see a strong trend at z=2?
This epoch marks the peak of the cosmic star formation history

But how does the bulge grow?

- Do stars form in situ and migrate from the (unstable) disk to the bulge?
- Is the bulge the result of accreted satellites?
- Is some other mechanism at play?

Nelson et al. (2012, 2013):
Star formation at z~1 occurs at all radii in exponential disks

van Dokkum et al. (2014):
Little growth in the centers of galaxies from z~0.8-0, but at higher redshifts there is growth at all radii.

Kate Whitaker
3D-HST Conference
November 17, 2015
Galaxy Structure as a Driver of the Slope and Scatter of the Star Formation Sequence

- We measure a systematic decrease in the global sSFRs of galaxies with increasing n: pure exponential-disk galaxies exhibit a steeper slope of the log(SFR)-log(M) relation than those with a significant bulge component.
 - Galaxies with n=2 track the average relation from Whitaker et al. 2014
- The process of forming a significantly massive bulge at z >1 appears to be connected to a transformation in the rest-frame optical galaxy structure before the decrease of the global sSFR of galaxies.